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Abstract

The aim of this work is to present the method of rational approximation as an alternative technique for finding empirical models for
thermophysical properties of relevant fluids to solid oxide fuel cells (SOFCs). The method of rational approximation is used here for
calculating the isobaric heat capacity, the entropy of formation, the enthalpy, the Gibbs energy of formation, the thermal conductivity and
the dynamic viscosity, at 0.1 MPa, of important gases in SOFCs (CH4, C2H6, C3H8, CH3OH, C2H5OH, CO2, CO, H2, H2O, O2, N2, NH3).
Rational approximations are well known for their ability to extrapolate, and this has been the main reason for adopting the method in
this paper, since it is often difficult and expensive to have experimental data in the entire range of interest. A data survey was conducted
for collecting the required information, and finally 75 rational approximations were generated all with a coefficient of determination of
R2 = 99%.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A fuel cell is a device that transforms chemical energy
into electricity. The energy stored in the fuel, usually hy-
drogen (H2), is converted to electricity by the means of
electrochemical reactions, the same principle found in a
battery, with the difference being that a fuel cell operates
as long as the fuel is supplied to the cell, whereas the bat-
tery is subject to a limited amount of fuel. One advantage
of solid oxide fuel cells (SOFCs) over other types of fuel
cells is the high operating temperature (700–1200 K), al-
lowing for cogeneration and better efficiencies. This feature
and the fact that all components are solids, make SOFCs
very attractive for stationary applications. The Energy and
Environmental Research Center (EERC) and the Chemical
Engineering Department at the University of North Dakota
are conducting a research in SOFCs and gasification pro-
cesses, with the final goal of incorporating them together in
a self-contained device. As part of this research the SOFC
modelling is also in development. Modelling has become
the main tool in understanding the complex behavior that
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the fuel cell undergoes in operation; it is also used as a de-
sign tool. Many papers have been published in the literature,
covering simple 2D steady models, e.g.[1,2], elaborated 3D
transient models, e.g.[3–6], exergy–energy analysis, e.g.
[7–10], and neural networks, e.g.[11,12]. All these models
require reliable thermophysical properties often in the form
of empirical correlations. Unfortunately, these properties are
usually in tabulated form; if the experimental data is avail-
able. Just recently some researches[13] have started the task
of compiling this information in to empirical correlations
(polynomials) easy to implement in computational models.
However, polynomial approximation often requires an ex-
tensive number of data points and high order polynomials
(i.e. many fitting parameters) for generating good fits. Poly-
nomial approximation gives poor results when is used for
extrapolation, therefore its applicability is restricted to the
data range. It would be better to have empirical correlations
valid in a broader range, generated with few data points, and
with less fitting parameters, but without sacrificing accuracy.
Rational approximations usually require less data than poly-
nomials for achieving the same results and they are good
in representing complicated structures for interpolation and
extrapolation. The method of rational approximation has
been widely used in physics and mathematics, e.g.[14–17],
but rarely in engineering areas. Hopefully, this work will
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start the interest on the technique, which is simple yet
powerful.

Section 2gives a brief description of the rational approx-
imation technique for curve fitting. The results and final
remarks are presented inSections 3 and 4. Appendix A
contains a guideline for those who want to write their own
code in rational approximations.

2. Rational approximation

A rational approximation is the ratio of two polynomials
R(x) = P(x)/Q(x).

R(x) =
∑N

i=0 aix
i∑M

i=0 bix
i
. (1)

We can takeb0 = 1 without loss of generality, the result-
ing rational approximation is known as a Padé approximant
of grade [N/M] [18]. The goal when using rational approx-
imation, or any other curve fitting technique is to find an
empirical equation (correlation) such that the error differ-
ence between the original data points and the correlation is
minimum. The most used method to minimize this error is
known as the least squares error (LSE). For a rational ap-
proximation the LSE is expressed by

LSE =
k∑

i=1

(
fi −

∑N
j=0 ajx

j
i

1 +∑M
j=1 bjx

j
i

)2

, (2)

∂(LSE)

∂aj
= 0, (3)

∂(LSE)

∂bj
= 0, (4)

wherek is the number of data points, and(xi, fi) are the
pairs of experimental data points; for example the data points
obtained from measuring the isobaric heat capacity (fi) at
different temperatures (xi).

The equations above will produce nonlinear results.
An alternative linear form can be developed when the
Cauchy–Padé method is used (see[14]),

fi ≈ P(xi)

Q(xi)
⇒ fiQ(xi) = P(xi), (5)

LSE =
k∑

i=0

AfiQ(xi) − P(xi)
2, (6)

∂(LSE)

∂ai
= 0, (7)

∂(LSE)

∂bi
= 0. (8)

Solving Eqs. (6)–(8)will generate a square matrix of co-
efficients, which can be solved using conventional linear

algebra techniques: LU decomposition, Gauss elimination,
etc. Software packages such as Mathematica, and Maple in-
corporate rational approximations, but they are intended for
the approximation of functions rather than data points. The
curve fitting toolbox of MatLab is an excellent application
for curve fitting, it includes rational, polynomial and many
other methods. However, we decided to write our own code;
detailed information is found inAppendix A.

3. Results

As reported in[19] the most probable options of fuels
for SOFCs are: methane (CH4), methanol (CH4O), ethanol
(C2H6O) and gasoline. However, gasoline is discarded in this
study because of its non-renewable nature. Other important
fluids are (see[13]): propane (C3H8), ethane (C2H6), steam
(H2O), carbon dioxide (CO2), carbon monoxide (CO), ni-
trogen (N2), oxygen (O2) and hydrogen (H2). Recently, am-
monia (NH3) has received some attention as an alternative
fuel for SOFCs[20], and is also considered in this paper.

The residual plots, the average of the absolute deviation
(AAD), the coefficient of determinationR2, and the root
mean squared error (RMSE) were used as indicators of the
goodness of our correlations. However, just theR2 is re-
ported in the tables because is the most identifiable statistic.
A great discussion on this topic and other ways to validate
empirical models is found in[21],

AAD = 1

k

k∑
i=1

|fi − R(x)|
fi

, (9)

R2 = 1 −
∑k

i=1(fi − R(x))2∑k
i=1(fi − f̄ )2

= 1 − SSE

SST
, (10)

RMSE=
(

SSE

k − (N + M + 1)

)1/2

, (11)

f̄ = 1

k

k∑
i=1

fi. (12)

A R2 closer to 1 and RMSE closer to 0 indicate better fits.

3.1. Extrapolation with a small experimental sample

As mentioned before, rational approximation is use-
ful when experimental data is scarce and extrapolation
is needed. Two examples showing these features are dis-
cussed next. For the first example a Padé approximant was
calculated for the isobaric heat capacity of methane, sev-
enteen data points were used; the values were taken from
the JANAF tables[22] in the range from 200–1500 K. The
resulted correlation fitted the data with aR2 = 99.99% and
s = 0.062. Then, the approximation was compared with
the equivalent polynomial expression reported in[13]. The
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Fig. 1. Extrapolation to the isobaric heat capacity of methane using a Padé
correlation generated with seventeen data points (�) and a polynomial
correlation (�) reported by Todd and Young[13]. The estimation is
compared to the experimental data reported in the JANAF tables[22].

Padé approximant, was able to fit the data over the inter-
polating range (200–1500 K) and the extrapolating range
(1500–2000 K) as well (seeFig. 1). Also, the resulting
correlation fitted the data with less fitting parameters than
the expression in[13], but without loosing accuracy. In the
second example a Padé approximant was calculated for the
isobaric heat capacity of carbon dioxide, but in this case just
seven points were used, the resulting approximation fitted
the data with aR2 = 99.99% ands = 0.0125. The results
are shown inFig. 2. These examples show the ability to
extrapolate data even when few experimental points were
available. However, careful analysis is always recommended
if the resulting approximation is intended for extrapolation.

Fig. 2. Extrapolation for the isobaric heat capacity of carbon dioxide using
a Pad́e correlation generated with seven data points (�) and the equivalent
polynomial (�) reported by Todd and Young[13]. The estimation is
compared to the experimental data reported in the JANAF tables[22].

3.2. Thermophysical properties

Padé correlations were computed for twelve fluids of in-
terest in SOFCs. The thermophysical properties considered
were the isobaric heat capacity (Cp), the entropy of forma-
tion (S◦), the enthalpy of formation (�fH

◦), the enthalpy,
the Gibbs free energy of formation (�fG

◦), the dynamic
viscosity (µ) and the thermal conductivity (λ). The informa-
tion was collected from published recommended data. We
decided to use only experimental reported data, theoretical
estimations and combination of two data sets (for enhancing
the data set) was always avoided.Table 1gives details about
the sources consulted, it also gives the maximum tempera-
ture (Tmax) used in the generation of the Padé correlations.
These equations could be used for extrapolation, if rough
estimations are required, but not recommended for accurate
estimations.Table 2presents the absolute deviation, from
the original data source, for the isobaric heat capacity (Cp),
the viscosity (µ) and the thermal conductivity (λ). SOFCs
operate usually between 800 and 1500 K, hence these two
temperatures were chosen inTable 2. When this compari-
son was not possible, the closer temperature was reported,
and it is indicated by a superscript. Also, when the experi-
mental data was not available, extrapolation was used, and
the comparison was made to other estimations reported in
the literature, the references consulted for these comparisons
are reported in the table as well. The thermophysical proper-
ties reported inTables 3–14 and 16, follow the conventional
form of a Padé approximant (seeEq. (1)). The Padé’s grade
[N/M] is included in each table. The tables report the coef-
ficients from left to right as:a0, a1, . . . , aN, b1, b2, . . . , bM .
Padé approximants are advantageous in the sense that can
be generated with few experimental data points, and to some
extent can be use for extrapolation. All the correlations re-
ported had a coefficient of determination ofR2 = 99%, and
in many cases even better.

The enthalpy of formation at standard conditions (�fH
◦
Tr)

is reported inTable 15, the values reported in the JANAF
tables are compared to the estimated values from the Padé
correlations. The enthalpy (H◦) is reported inTable 16, the
reason is separated from the other properties is because the
structure of the correlations is a bit different in the sense
that it includes the term�fH

◦
Tr. The Padé correlations for

the enthalpy follow the same general form ofEq. (1) with
the following modification:

H◦(T) =
∑N

i=0 aix
i

1 +∑M
i=1 bix

i
− �fH

◦
Tr, (13)

where Tr= 298.15 K.

3.3. Discussion

For some fluids the deviation was more noticeable at
lower temperatures. The residual plot is a good indicator to
see if the correlation could be improved, when the plot is
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Table 1
Tmax used for interpolation and reference data

Cp (J K−1 mol−1) S◦ (J K−1 mol−1) �fH
◦ (kJ mol−1) �fG

◦ (kJ mol−1) µ (�Pa s) λ (mW m−1 K−1) Reference

CH4 2000 2000 2000 2000 1773 1773 [22–24]
C2H6 1500 1500 1500 1500 1773 600 [23,25,26]
C3H8 1500 1500 1500 1500 750 600 [25–27]
CH3OH 1500 1500 1500 1500 600 750 [25,27–29]
C2H5OH 1500 1500 1500 1500 600 1000 [25,27,29]
CO2 2000 2000 2000 2000 1500 1400 [22,24,28,30]
CO 2000 2000 2000 2000 1773 2000 [22,23,31]
H2 2000 2000 – – 2000 2000 [22,32,28]
H2O 2000 2000 2000 2000 1073 1073 [22,33]
O2 2000 2000 – – 1400 1400 [22,34]
N2 2000 2000 – – 1773 2000 [22,23,31]
NH3 2000 2000 2000 2000 850 850 [22,35]

Tmin = 298.15 K for all cases.

Table 2
Deviation (%) atT1 = 800 K andT2 = 1500 K with respect to the source data

Cp µ λ Reference

T1 T2 T1 T2 T1 T2

CH4 0.0223 0.0086 0.04020 0.0027a 0.0424 0.0006a

C2H6 0.0078 0.0010 0.00420 0.0022a NA [13]
C3H8 0.0677 0.0289 0.2046b NA NA [13]
CH3OH 0.0600 0.0092 0.6722c NA 0.7029b NA [36]
C2H5OH 0.0754 0.0369 1.5425c NA 0.0434 NA [36]
CO2 0.0161 0.0202 0.00530 0.00470 0.2415 0.1860d

CO 0.0444 0.0060 0.00010 0.0007a 0.0064 0.0189
H2 0.0942 0.0172 0.08710 0.05410 0.3170 0.3311
H2O 0.0619 0.0090 0.00300 5.3334c 0.0009 1.7058c [13]
O2 0.2799 0.0220 0.00130 0.0028d 0.0848 0.0823d

N2 0.0877 0.0501 0.00010 0.0007a 0.0206 0.0177
NH3 0.1325 0.0079 0.01150 NA 0.0447 NA

a a = 1773 K.
b c = 750 K.
c Extrapolation.
d b = 1400 K.

Table 3
Thermophysical properties for methane (CH4)

[N/M] R2

Cp [3/2] 44.300100 −0.076325770 0.0004250204 −2.003423E−08 0.0013033600 2.889771E−06 0.9999
S◦ [1/3] 141.046300 0.408253200 0.0014772460 −3.113396E−07 5.277425E−11 0.9999
�fH

◦ [2/3] −68.316570 −0.022445170 −0.0001987408 0.0002184224 1.917568E−06 8.629875E−11 0.9999
�fG

◦ [3/2] −69.418760 −0.054269370 6.414136E−05 1.284521E−07 0.0013455240 1.191685E−06 0.9999
µ [3/1] −1.217438 0.052877710 2.023846E−05 −3.791026E−10 0.0015520230 0.9999
λ [2/2] 11.632370 −0.006260186 0.0004209756 0.0011157170 3.14901E−070 0.9999

Table 4
Thermophysical properties for ethane (C2H6)

[N/M] R2

Cp [2/2] 12.735040 0.12691270 0.0001646422 0.0005393203 9.430913E−07 0.9999
S◦ [2/1] 173.096400 0.24741290 −5.128808E−06 0.0002526365 0.9999
�fH

◦ [2/2] −64.795130 −0.09806924 −2.056518E−05 0.0003588526 3.861861E−07 0.9999
�fG

◦ [1/3] −79.384720 0.16901950 −0.0003939651 2.669346E−07 −6.403402E−11 0.9999
µ [2/1] −1.933514 0.04468533 1.181946E−05 0.0011285110 0.9999
λ [3/2] −1.778584 0.07049372 −0.0002124490 9.348156E−07 −0.0009316998 5.311781E−06 0.9999
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Table 5
Thermophysical properties for propane (C3H8)

[N/M] R2

Cp [2/2] 12.350270 0.17762730 0.0004986025 0.0010922370 1.849955E−06 0.9999
S◦ [1/2] 190.485800 0.33304640 0.0002374546 1.724174E−08 0.9999
�fH

◦ [1/2] −76.440570 −0.15892480 0.0005722084 2.468723E−07 0.9999
�fG

◦ [2/3] −95.345180 0.19314520 0.0001473752 0.0001054764 2.275926E−07 −5.275657E−11 0.9999
µ [1/2] 1.559428 0.01903184 −0.0005999190 5.891039E−07 0.9999
λ [2/2] 3.074473 −0.01341112 0.0002030202 −0.0004190028 9.777090E−07 0.9999

Table 6
Thermophysical properties for methanol (CH3OH)a

[N/M] R2

Cp [2/2] 27.2063700 0.033667820 0.0002323243 0.0005524408 1.718860E−06 0.9999
S◦ [1/2] 191.6626000 0.289763300 0.0005418806 −2.739696E−08 0.9999
�fH

◦ [1/2] −185.5023000 −0.187439200 0.0006556361 6.370553E−08 0.9999
�fG

◦ [1/3] −197.1941000 0.146381600 −0.0002355756 2.000135E−07 −5.928055E−11 0.9999
µa [1/1] −0.7339101 0.036183810 0.0001126046 0.9997
λa [1/3] 3.6246360 0.006034229 −0.0034030690 4.583233E−06 −2.179021E−09 0.9996

a Tmin = 340 K.

Table 7
Thermophysical properties for ethanol (C2H5OH)a

[N/M] R2

Cp [2/2] 37.5630800 0.003701471 0.0010894790 0.0021285390 4.834939E−06 0.9999
S◦ [2/1] 208.3071000 0.365999500 6.727513E−06 0.0004345229 0.9999
�fH

◦ [1/3] −213.6227000 −0.171063100 0.0003840254 1.479425E−07 −2.149535E−11 0.9999
�fG

◦ [2/3] −221.0303000 −0.422576100 0.0006763252 0.0023520990 9.009738E−08 −1.213238E−11 1.0000
µa [1/1] −0.3081893 0.032087770 0.0001755315 0.9986
λa [1/3] −3.5346540 0.043296920 −0.0016633990 1.461276E−06 −4.922065E−10 0.9999

a Tmin = 360 K.

Table 8
Thermophysical properties for carbon dioxide (CO2)

[N/M] R2

Cp [1/3] 15.9293400 0.1310897000 0.0015818570 1.413140E−07 −1.492641E−11 0.9999
S◦ [1/3] 162.2327000 0.4991412000 0.0015669680 −1.272666E−07 1.590139E−11 0.9999
�fH

◦ [0/4] −393.5301000 2.955723E−06 −9.660127E−09 4.875419E−12 −9.033876E−16 0.9996
�fG

◦ [3/1] −393.3602000 −0.0668642900 1.063131E−06 −3.307527E−11 0.0001599438 0.9998
µ [2/3] −0.3627303 0.0493084000 0.0001247949 0.0019321880 1.480674E−06 −2.024057E−10 0.9999
λ [1/3] −2.7993020 0.0537140700 −0.0009294698 9.780868E−07 −3.028957E−10 0.9999

Table 9
Thermophysical properties for carbon monoxide (CO)

[N/M] R2

Cp [3/2] 29.688350 −0.03756144 5.373678E−05 1.170652E−09 −0.0011319600 1.549482E−06 0.9999
S◦ [1/3] 126.590700 1.40057800 0.0060710860 −6.607275E−07 1.024591E−10 0.9999
�fH

◦ [3/1] −114.807900 −0.18031910 −2.255532E−05 1.685088E−09 0.0018228270 0.9998
�fG

◦ [3/2] −110.472500 −0.03484187 6.937390E−06 −2.724657E−08 −0.0004932971 3.203531E−07 0.9999
µ [2/3] −7.186509 0.14984760 0.0005861958 0.0118500000 5.491016E−06 −8.945480E−10 0.9999
λ [2/3] −2.279536 0.11057870 5.884957E−05 0.0015509920 −2.176592E−07 6.198217E−11 0.9999
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Table 10
Thermophysical properties for hydrogen (H2)

[N/M] R2

Cp [4/2] 24.130810 0.001107916 2.723492E−05 3.707239E−08 −5.867667E−12 −0.0008902458 2.660622E−06 0.9981
S◦ [2/2] 74.709380 0.677136600 0.0001220837 0.0039266450 3.303912E−07 0.9999
µ [2/1] 2.251621 0.027411680 8.300364E−06 0.0008476300 0.9999
λ [1/3] −13.500230 0.967976900 0.0020700670 −1.166006E−06 2.138789E−10 0.9999

Table 11
Thermophysical properties for water (H2O)

[N/M] R2

Cp [2/2] 33.253760 −0.007235433 3.047110E−05 −0.0001375154 5.058140E−07 0.9999
S◦ [1/3] 119.670700 1.058446000 0.0045406960 −5.492381E−07 7.037198E−11 0.9999
�fH

◦ [2/1] −238.039200 −0.073690040 2.072838E−06 0.0002495145 0.9995
�fG

◦ [1/2] −241.365800 0.044332430 −1.770163E−05 4.030592E−08 0.9999
µ [1/2] −1.043642 0.031849010 −0.0003785168 1.976538E−07 0.9999
λ [2/1] 31.182260 −0.111481900 0.0004250616 0.0025513490 0.9999

Table 12
Thermophysical properties for oxygen (O2)

[N/M] R2

Cp [3/2] 28.057060 −0.04059181 2.917448E−05 4.033074E−09 −0.0015852160 1.177089E−06 0.9990
S◦ [2/1] 159.823000 0.59264270 2.580317E−05 0.0021935650 0.9999
µ [2/3] −3.008213 0.11590190 0.0001831793 0.0041151080 1.046158E−06 −1.285754E−10 0.9999
λ [2/1] 2.551594 0.08442653 −2.148324E−06 0.0002034283 0.9999

Table 13
Thermophysical properties for nitrogen (N2)

[N/M] R2

Cp [2/2] 29.418560 −0.02399357 3.523777E−05 −0.0007104165 9.562046E−07 0.9996
S◦ [3/1] 117.768500 1.53470400 0.0002048388−2.673700E−08 0.0070239710 0.9999
µ [2/3] −7.186509 0.14984760 0.0005861958 0.0118500000 5.491016E−06 −8.945480E−10 0.9999
λ [2/4] −18.588180 0.32766320 0.0005955238 0.0152286000−5.872769E−06 3.342142E−09 −6.129376E−13 0.9999

Table 14
Thermophysical properties for ammonia (NH3)

[N/M] R2

Cp [2/2] 30.183570 0.01828932 7.105129E−05 0.0003203040 7.942573E−07 0.9999
S◦ [1/3] 134.846000 0.72763790 0.0029158910 −4.892336E−07 7.254739E−11 0.9999
�fH

◦ [2/2] −38.172200 −0.04001909 −7.888714E−06 0.0002634952 3.009345E−07 0.9999
�fG

◦ [2/2] −41.502500 −0.01514588 0.0002335444 0.0018138650 4.466832E−08 0.9999
µ [2/3] 8.622304 −0.04270181 0.0003155012 0.0030816200 5.585175E−06 −1.871846E−09 0.9999
λ [4/1] 33.485680 −0.13574630 0.0002697936 5.944465E−07 −7.579975E−10 0.0002611385 0.9999

Table 15
Enthalpy of formation at standard temperature

Fluid JANAF Pad́e Deva

CH4 −74.8730 −74.8668 0.0082
C2H6 −84.0000 −83.9926 0.0088
C3H8 −103.8470 −103.8314 0.0150
CH3OH −201.0000 −200.9650 0.0174
C2H5OH −234.8000 −234.7886 0.0049
CO2 −393.5220 −393.4732 0.0124
CO −110.5270 −110.4847 0.0383
H2O −241.8260 −241.8349 0.0037
NH3 −45.8980 −45.8958 0.0049

�fH
◦ (298.15 K).

randomly scattered around zero the approximation can not
be improved, otherwise a better correlation can be gener-
ated. For example, theCp of hydrogen could be improved
if a Padé [4/3] is used instead of a Padé [4/2] (seeFig. 3).
However, since SOFCs operate at high temperatures, we
decided to stay with the simpler Padé for this and similar
cases. The absolute deviation (Deva) is defined as

Devr = fi − R(xi)

fi
× 100,

Deva = |Devr|.
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Table 16
Pad́e [N/M] correlations for predicting the enthalpy

Fluid R2

CH4 [5/1] −85.75843 −0.08219566 −2.205121E−05 1.511815E−07 −6.524674E−11 1.178606E−14 0.0015155080 0.9999
C2H6 [1/4] −93.89374 0.08138350 −0.0007150031 5.329930E−07 −2.122816E−10 3.441019E−14 0.9999
C3H8 [1/5] −117.15270 0.11008020−0.0007993322 6.300195E−07 −2.104673E−10 −1.898936E−14 2.039528E−17 0.9999
CH3OH [4/1] −208.60450 −0.32474160 9.307114E−05 5.880019E−08 −1.189421E−11 0.0015801140 0.9999
C2H5OH [2/3] −245.92480 −0.04058813 8.462722E−05 0.0001911241 1.206822E−07 −3.202532E−11 0.9999
CO2 [2/2] −402.53190 −0.18356540 2.532474E−05 0.0005100149 4.714306E−08 0.9999
CO [5/1] −120.34680 −0.06796633 −7.965714E−06 4.959540E−08 −2.876021E−11 6.574728E−15 0.0009008641 0.9999
H2O [3/2] −252.19510 0.06739300−0.0001262354 2.291166E−08 −0.0001250512 4.599617E−07 0.9999
NH3 [1/5] −55.27327 0.04514227 −0.0003096372 −2.741745E−09 1.673412E−10 −1.182764E−13 2.740371E−17 1.0000

Although, all thermophysical properties were represented
with rational approximations, some properties could be cor-
related with simpler techniques, such as polynomial or lin-
ear regression. Our intention is to present the method as
an alternative, but the decision as to be taken based on the
structure of the data (simple or complicated), the number
of experimental points available, and the needs for the re-
sulting correlation (interpolation or extrapolation). Finally,
is important to mention that there are some empirical cor-
relations for thermophysical properties, that are remarkably
simple and powerful. Some of these are the viscosity and
thermal conductivity for many liquids and gases reported
in [36], or in the case of the heat capacity, the correla-
tions reported in[37]. These correlations give good estima-
tions, but not necessarily the best.Fig. 4 compares the ab-
solute deviation to the JANAF tables of the Padé correla-
tions reported here, and the empirical correlations reported
in [37] at 1500 K. Although both gave very good results, the
Padé correlations seem to be more consistent in reporting
always the smaller deviation. However, this could be due
to the fact that different data sets were used in generating
the correlations. In fact, He et al.[38] report these incon-

Fig. 3. Approximation to the isobaric heat capacity of hydrogen using a
Pad́e correlation of order [4/2] (�) and the improved Padé correlation of
order [4/3] (�).

Fig. 4. Comparison between the estimation of the isobaric heat capacity
at 1500 K, using Pad́e correlations and the equations reported in by Smith
et al. [37].

sistencies in compiling thermodynamic data from different
sources.

The Padé correlations usually produce good results with
few experimental points, are good candidates for extrap-
olation and are capable of fitting complicated structures.
However, they tend to become unstable at the poles (zeros
in the denominator) of the function and sometimes the ap-
proximation does not converge. Special care to this matter
is recommended.

4. Final remarks

The method of rational approximation was successfully
used in the representation of the thermophysical properties
for relevant fluids to SOFCs. The method was used for ex-
trapolation when little experimental data was available. This
was the case for ethane, propane, methanol and water. The
extrapolated estimation was compared with estimations re-
ported by others. All 75 correlations had aR2 = 99%. The
correlations reported in this paper generally required less
fitting parameters than the polynomials by Todd and Young
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[13]. Some correlations were not able to fit the data very
well at low temperatures. Residual plots showed that these
approximations could be improved, however, since SOFCs
operate between 800 and 1500 K, we decided to report sim-
pler correlations that worked better at high temperatures.
Polynomials are very good interpolating experimental data,
but not for extrapolation, and this has been the main reason
for adopting rational approximations. However, analytic in-
tegration is more difficult for rational approximations, thus
calculating enthalpies or entropies using the correlations for
theCp is not as easy as with polynomials, and this is why
we are reporting independent correlations for these thermo-
dynamic properties. The correlations presented in this paper
were created having the modelling of SOFCs in mind. Dur-
ing the operation of SOFCs it is sometimes difficult to have
a perfect control in the variables involved and temperatures
rise above the expected values. If this is the case a poly-
nomial representation could lead to an incorrect analysis of
the system. Rational approximations due to their ability to
extrapolate, will not be as susceptible to these operational
changes.
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Appendix A

An example is developed to clarify the method. Let’s
assume that a rational approximation is required to fit ak

number of data points with three coefficients; Padé [1/1].
The Padé approximant will be then

R(x) =
∑N=1

i=0 aix
i

1 +∑M=1
j=1 bjxj

= a0 + a1x

1 + b1x
. (A.1)

In order to find the coefficients in(A.1) the least squares
method is used, the resulting equations are

LSE =
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 (A.2)

A × c = b (A.3)

where
∑ = ∑k=3

i=1 .
The matrix can be solved using conventional techniques.

Unfortunately, when more coefficients are required cre-
ating the matrix becomes more complicated. A pattern
can be identified, the pattern is then broken in different
sub-matrices.

1. A1: elements ofA less thanN in the rows and in the
columns.

2. A2: elements ofA less thanN in the rows but greater
thann in the columns.

3. A3: elements ofA greater thanN in the rows but less
thann in the columns.

4. A4: elements ofA greater thanN in the rows and in the
columns.

5. b1: elements ofb less thanN in the rows.
6. b2: elements ofb greater thanN in the columns.

whereN is the numerator grade (N = 1 for the example
above). The final matrix is builded upon the integration of
these sub-matrices. The equations for creating them are pro-
vided next,

A1 :  c,r = −
k∑

i=1

xc+r
i , A2 :  c,r =

k∑
i=1

fix
c+r−N
i

(A.4)

A3 = −AT
2 , A4 :  c,r =

k∑
i=1

f 2
i x

c+r−2N
i (A.5)

b1 :  r = −
k∑

i=1

fix
r
i , b2 :  r = −

k∑
i=1

f 2
i x

r−N
i (A.6)

A =
(

A1 A2
A3 A4

)
b =

(
b1
b2

)
(A.7)

wherec are the columns,r the rows and the coefficient
elements.

Once the matrix is created is just a matter of findingA−1

in (A.7). An algorithm in C or Fortran can be implemented
readily, an excellent reference for solving(A.3) can be found
in [39].
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